In vielen Unternehmen werden im Bereich Data Analytics Schlagworte wie Data Fabric, Big Data, Data Lakehouse und datengetriebene Geschäftsprozesse diskutiert, um Innovation voranzutreiben. Fachbereiche fordern Lösungen, um ihre innovativen Ansätze umzusetzen: Beispielsweise verbrauchsorientierte Abrechnungsmodelle (pay per use) für teure Maschinen oder KFZ-Versicherungen nach gefahrenen Kilometern. Solche Lösungen erfordern für die Kalkulation die Verfügbarkeit sämtlicher relevanter Daten und für die spätere Abrechnung eine Übertragung hochaktueller Informationen aus unterschiedlichen Quellen und Formaten.
Daraus ergeben sich, zusätzlich zu den klassischen Herausforderungen, neue Problemstellungen für Lösungs-Architekturen und -Werkzeuge: Der Fokus verschiebt sich von strukturierten hin zu semi- und unstrukturierten Daten und eine laufende Datenversorgung. Um diese Herausforderungen zu bewältigen, sind Datenorientierung sowie eine strategische Ausrichtung auf Analyse und Interpretation von Daten erforderlich. Hinzu kommen Themen wie Cloud, Containerisierung, Big Data, Data Science und AI.
Schlussendlich braucht es eine Modernisierung oder Neuausrichtung der Data Analytics Umgebung, um diesen Anforderungen gerecht zu werden. Ein aufwändiges Unterfangen, was gut geplant sein will – im Blogbeitrag erläutere ich Ihnen sechs Schritte, um Ihr Data Analytics Projekt zum Erfolg zu führen.